Kinematics and detection of infall of IRAS 16293-2422

Yuan-Chih Hsiao

Advisor: Vivien Chen August 30 2019

NTHU

IRAS 16293-2422

- Location: p Ophiuchus star-forming region
- Class 0 protostar
- Binary system
 - Source A and B separated by 5"(600 AU) (Looney et al. 2000)
- Shows a rich chemistry, with hot-core-like (hot corino) properties

Data

- Science Verification data
- Band 4 (125-163 GHz), Band 6 (211-275 GHz), Band9 (602-720 GHz)
- X1ed.decimated.ms.I16293, X39.decimated.ms.I16293, X3bf.decimated.ms.I16293, X4fb.decimated.ms.I16293

Combine data sets with task: concat

I16293_corrected.ms

Observations

Data records: 224400 Total elapsed time = 19730.6 seconds Observed from 16-Aug-2011/23:07:54.9 to 17-Aug-2011/04:36:45.5 (UTC) Fields: 2

ID	Code	Name			RA		Decl		Epoch	SrcId	nF	Rows	201	irce A
0	none	IRAS	16293-	2422-a	16:32:22.	990000	-24.28.3	36.10000	J2000	0	112	2200	Sou	Irco R
1	none	IRAS	16293-	2422-a	16:32:22.	715314	-24.28.3	32.32602	J2000	0	112	2200	500	
Spectra	al Wir	ndows:	: (1 u	unique s	pectral win	dows ar	nd 1 unio	que polar	rizati	on setups)				
SpwII	D Nan	ne 🕯	‡Chans	Frame	Ch0(MHz)	Chan	Wid(kHz)	TotBW ()	(Hz) C	trFreq(MHz)	BBC	Num	Coi	rs
0			480	TOPO	220299.429	-4	488.281	234375	5.0 22	0182.4861		1	XX	YY
Sources	s: 1													
ID	Name			Spw	Id RestFreq	(MHz)	SysVel()	km/s)						
0	IRAS	16293	3-2422-	-a 0	-		-							
Antenna	as: 16	5:												

Spectral Profile

Chan: 405~430

Continuum Map

Continuum map after self-cal done by the paper

Subtract Continuum

Chan: 405~430

Channel Map

Moment Maps

Moment 0

Moment Maps

Moment 1

Detect Inverse P-Cygni Profiles

Inverse P-Cygni Profile: Infall Signature

Two-Slab Approximation

Describe by Myers et al. (1996) Modification introduced by Di Francesco et al. (2001)

Expected line emission at velocity V can be expressed as

$$\Delta T_B = (J_f - J_{cr})[1 - e^{-\tau_f}] + (1 - \phi)(J_r - J_b)[1 - e^{-(\tau_r + \tau_F)}]$$

where

$$J_{cr} = \phi J_c + (1 - \phi) J_r$$

and

$$\tau_f = \tau_0 \exp\left[\frac{-\left(V - (V_{lsr} + V_{in})\right)^2}{2\sigma_v^2}\right]$$

$$\tau_r = \tau_0 \exp\left[\frac{-(V - (V_{lsr} - V_{in}))^2}{2\sigma_v^2}\right]$$

Radiation temperature is defined as

$$J_x = \frac{T_0}{\left[e^{T_0}/T_x - 1\right]}$$

Two-Slab Approximation

Fixed value

 $T_f = 3 K, T_c = 20 K, T_b = 2.75 K, V_{lsr} = 3.4 km s^{-1}, \phi = 0.3$

(Pineda et al. 2012)

Free parameters for fitted "two-slab" model

- Infall velocity of the layers V_{in}
- Optical depth τ_0
- Velocity dispersion σ_v
- Excitation temperature of the layer of the rear T_r

My Fitting Results

H₂CCO

0.24

0.85

0.48

120.44

My Fitting Results

Line	T _r (K)	τ_0	V _{in} (km s⁻¹)
CH₃OCHO-E	47.48	0.42	0.71
CH₃OCHO-A	49.35	0.41	0.72
H ₂ CCO	120.44	0.24	0.85

Line	T _r	$ au_0$	$V_{ m in}$
	(K)		$({\rm km}{\rm s}^{-1})$
CH ₃ OCHO-E	44 ± 3	0.48 ± 0.04	0.49 ± 0.02
CH ₃ OCHO-A	46 ± 3	0.45 ± 0.04	0.49 ± 0.02
H_2CCO	60 ± 10	0.33 ± 0.05	0.51 ± 0.07

Fitting Result (Absorption Only)

CH₃OCHO-A

CH₃OCHO-I

H₂CCO

Line	Т _г (К)	τ_0	V _{in} (km s⁻¹)	σ _v (km s⁻¹)
СНЗОСНО-Е	32.56	0.79	0.28	0.34
СНЗОСНО-А	34.11	0.74	0.32	0.35
H2CCO	45.42	0.82	0.28	0.30

Infall Rates

Assuming spherical symmetry, $\dot{M}_{infall} = 4\pi r_{in}^2 n_{in} \mu m_H V_{in}$ r_{in} : infall radius, V_{in} : velocity, n_{in} : density, μ : mean molecular weight of gas=2.3

 r_{in} can be estimated assuming the in-fall velocity is only free-fall, $M = \frac{V_{in}^2 r_{in}}{2G} = \frac{4}{3}\pi r_{in}^3 \mu m_H$

Therefore, the accretion rate is estimated as

$$\dot{M}_{infall} = 4.2 \times 10^{-5} \left(\frac{V_{in}}{0.5 km \, s^{-1}}\right)^3 M_{\odot} yr^{-1}$$

(Pineda et al. 2012)

Infall Rates

$$\dot{M}_{infall} = 4.2 \times 10^{-5} \left(\frac{V_{in}}{0.5 km \, s^{-1}} \right)^3 M_{\odot} yr^{-1}$$

molecule	V _{in} (km s⁻¹)	\dot{M}_{infall} ($M_{\odot}yr^{-1}$)
CH ₃ OCHO-E	0.28	7.38×10^{-6}
CH ₃ OCHO-A	0.32	1.1×10^{-5}
H ₂ CCO	0.28	7.38×10^{-6}

Molecule	V _{in} (km s⁻¹)	\dot{M}_{infall} ($M_{\odot}yr^{-1}$)	
CH ₃ OCHO-E	0.49 ± 0.02	4.2×10^{-5}	
CH ₃ OCHO-A	0.49 ± 0.02	4.5×10^{-5}	
H ₂ CCO	0.51 ± 0.07	4.8×10^{-5}	(Pineda et al. 2012)

Summary

- Different feature in moment map
 - Rotation of source A
- Infall rates of source B

molecule	V _{in} (km s⁻¹)	\dot{M}_{infall} ($M_{\odot}yr^{-1}$)
CH ₃ OCHO-E	0.28	7.38×10^{-6}
CH ₃ OCHO-A	0.32	1.1×10^{-5}
H ₂ CCO	0.28	7.38×10^{-6}

\sim Thank you for listening \sim