2019 UCAT Summer Student Program Progress Report 2019.08.30 NTHU

Searching For Young Proto-Planetary Disks

Student: 吳冠賢 Kuan-Hsien Wu (NTHU) Adviser: 賴詩萍 Shih-Ping Lai (NTHU)

NATIONAL TSING HUA UNIVERSITY

P1 - 20190708 ~ 20190719

Basic ISM knowledge and Data Manipulation

- Region Orion A (molecular cloud)
 - Dust Continuum
 - Dust Alpha, Beta Map
 - Dust Column Density Map
 - Molecular Line
 - 12CO (J 1-0), 13CO (J 1-0), C18O (J 1-0)
 Moment Map (mom0 & mom1)
 - 12CO Excitation Temperature Map
 - 13CO, C18O Column Density Map
- Data
 - Dust Continuum: Herschel Space Observatory
 - Molecular Line: Nobeyama Radio Observatory (NRO-45m)

P2 - 20190722 ~ 20190802

Making PV Diagrams and Moment Maps

- Target HD163296
 - Molecular Line
 - 12CO (J 1-0), 13CO (J 1-0), C18O (J 1-0)
 - 230.53 GHz, 220.40 GHz, 219.56 GHz
 - Moment Maps
 - Moment-0 Maps
 - Moment-1 Maps
 - PV Diagrams
 - Position Velocity Diagrams
 - Fitting with Keplerian Motion to Find Stellar Mass
- Data
 - ALMA Cycle 0 (Band 6)

P3 - 20190803 ~ 20190816

Learning RADMC3D Simulation

- Target HD163296
 - Radmc3D Modeling
 - PPDisk Model
 - Dust Density Dist.
 - Dust Temperature
 - Gas Temperature
 - Gas Velocity Field
 - SED of HD163296
 - Dust Continuum
 - Line Emission 12CO (J 3-2)

$20190819 \sim 20180830$

Modeling and Comparing with Observation

- Target HD163296
 - Radmc3D Modeling
 - Band6 Dust Continuum
 - CO 3-2 Line Emission
 - Comparison with Observation Data
 - Parameters and Equations From
 - Isella et al. (2016) Review Paper
 - Isella et al. (2016) Supplementary
 - Rosenfeld et al. (2013)
- Data
 - Band6 Continuum: ALMA Fits Archive (2013.1.00601.S)
 - CO 3-2 Line Emission: ALMA SV Data

HD163296 Info

- **RA(FK5):** 17h53m20.606374s
- Star Class: Herbig Ae/Be star
- Spectral Type: A1Vep C
- Star Mass: 2.3 solar mass
- Star Radius: 1.66 solar radius
- Star Temperature: 9330 K

- **DEC(FK5):** -21d56m57.379724s
- Distance to us: 122 pc
- Inclination Angle: 42 deg
- Position Angle: 132 deg
- Gap Location: 60, 100, 160 AU

CREDIT: https://www.quantamagazine.org/stellar-disks-reveal-how-planets-get-made-20180521/

Radmc3D model setup

Column Density Dist. (Dust, Molecules, Gas)

$$\sum (r) = \sum_{c} (r/r_{c})^{-\gamma} \exp[-(r/r_{c})^{2-\gamma}]$$

• Density Dist. (Dust, Molecules, Gas)

$$\rho(r,\phi) = \frac{\sum(r)}{H(r)\sqrt{2\pi}} \exp\left[\frac{-z^2}{2H_p^2}\right]$$

$$H(r) = 16 AU (r/150 AU)^{1.35}$$
$$T_a(r, z) = T_{a,0} (\sqrt{r^2 + z^2}/r_0)^{-q_a}$$
$$T_m(r) = T_{m,0} (r/r_0)^{-q_m}$$
$$z_q(r) = z_{q,1} (r/r_1)^{q_z} e^{-(r/r_2)^2}$$

• Temperature Dist. (Dust, Gas)

$$T(r,z) = \begin{cases} T_a(r,z) + [T_m(r) - T_a(r,z)] \left(\cos\frac{\pi z}{2z_q(r)}\right)^{2d(r)}, & \text{if } |z| < z_q(r) \\ T_a(r,z), & \text{otherwise.} \end{cases}$$

Radmc3D model setup

Dust Opacity

- Most Various Parameter
- Input Dust Opacity in different wavelength

Gas Velocity

- Assuming Keplerian Motion

Gas Turbulence

- Assuming No Turbulence

Gas Species

- Assuming there is Only CO, H2

Gas Abundance

- Assuming [CO]/[H2] is universal constant

• Ring Gap

- There is one Degeneracy:
 - Wider Gap -> More Depletion (<u>Use This One</u>)
 - Narrower Gap -> Less Depletion

Dust Continuum

CREDIT: ALMA (ESO/NAOJ/NRAO); A. Isella; B. Saxton (NRAO/AUI/NSF)

Radmc3d Image Manipulation

- Convert Pixel to Beam
 - Unit: Jy/Pixel -> Jy/Beam
- Beam Convolution
 - Use Observational Beam to Convolve Images
 - Input FWHM [Major, Minor], Position Angle

Calculate Dust/Gas Column Density

Isella et al. (2016)

This work

Calculate Dust/Gas Density

Calculate Gas to Dust Ratio

Isella et al. (2016)

Calculate Temperature Dist.

This Work

Observation

Isella et al. (2016)

Calculate Dust Density Dist.

Dust Density

http://www.learningaboutelectronics.com/Articles/Spherical -to-cylindrical-coordinate-converter-calculator.php

Due to technical problem, this work uses **spherical coordinate** not **cylindrical coordinate** that was used in (Isella et al. 2016)

Band6 Dust Continuum

Isella et al. (2015)

Observation

Simulation

Band6 Dust Continuum

Isella et al. (2016)

CO 3-2 Line Emission

- Double Cone Model
 - Observed Velocity Changes Due to Inclination
 - Actually Observed Different Part of Disk

Observed At Identical Velocity Channel

white line, white dashed line, and white dot line indicates same velocity contour

CO 3-2 Line Emission

Observation

Simulation

Discussion

- How to Improve Simulation ?
 - (1) Try Different Opacity Sets
 - (2) Try Different Velocity Sets
 - For this simulation, all assuming in Keplerian motion
 - In Rosenfeld et al. (2013), they provide other velocity sets
- Why not seeing Double-Cone In Simulation ?
 - (1) Modeling Scale isn't Large Enough
 - (2) Velocity Turbulence may be needed. Since providing Wider Velocity Distribution, It may help to Separate Near Cone and Far Cone Apart.

Work Progress Revisit

- Target HD163296
 - Radmc3D Modeling
 - Band6 Dust Continuum
 - CO 3-2 Line Emission
 - Comparison with Observation Data
 - Parameters and Equations From
 - Isella et al. (2016) Review Paper
 - Isella et al. (2016) Supplementary
 - Rosenfeld et al. (2013)
- Data
 - Band6 Continuum: ALMA Fits Archive (2013.1.00601.S)
 - CO 3-2 Line Emission: ALMA SV Data

Thanks for Listening Any Questions?

