Structures of the Protoplanetary Disk around HD163296

Chia-Ying Chung Advisor : Vivien Chen August 30th 2019 UCAT Summer Student Program

HD163296

Isolated, pre-main-sequence star

- Distance: 122 pc (van Leeuwen 2007)
- Age: 5 Myr
- $M_* = 2.3 \text{ M}_{\text{sun}}$ (Montesinos et al. 2009)

Disk properties

- Disk mass: 0.089 Msun (~4% M*)
- Outer radius: 550 AU in CO
- Inclination: 45° (Isella et al. 2007)

ALMA science verification data

Frequency band: Band 7 (345 GHz) Dates: 9, 11, 22-Jun, 6-Jul-2012 Total integration time: 2.3 h (on source) Antenna diameter: 12 m Baselines length: 16 m (min), 400 m (max)

4 spectral windows:

Emission Line	Rest Frequency (GHz)
DCO ⁺ (5-4)	360.1697838
HCO ⁺ (4-3)	356.7342369
H ¹³ CO ⁺ (4-3)	346.9983500
CO (3-2)	345.7959818

Data reduction and analysis

quasar J1924-292 183GHz water line /Neptune quasar J1733-130

Continuum image

1st iteration

2nd iteration

3rd iteration

CO(3-2) channel map

CO(3-2) channel map after self-calibration

CO(3-2) channel map with interactive clean

Moment 0 map

Moment 1 map

Flat disk model

Isovelocity contour

• t > 0 (near cone) At same y', v_{θ}^2 is smaller \implies shift to smaller y'• t < 0 (far cone)

At same y', v_{θ}^2 is larger \implies shift to larger y'

Contour shift in channel map

• CO emitting surface is like a double cone structure with $\varphi \sim 15^{\circ}$

Literature review of Rosenfeld et al. 2013

• Line emission :

Calculate the molecular excitation state of the gas and integrate the radiative transfer equation

$$I_{\nu} = \int_0^{\infty} S_{\nu}(s) \exp[-\tau_{\nu}(s)] \alpha_{\nu}(s) ds$$

 S_{ν} : source function, τ_{ν} : optical depth, α_{ν} : absorption coefficient depend on the local temperature T_{gas} and density ρ_{gas}

Temperature structures

• Structure (a) : no vertical gradient

 $T_{gas}(r) = 65K(r/100AU)^{-0.5}$

• Structure (b) : a warm molecular layer above a cold midplane

$$T_a = 30K$$
 $z > 20(r/100AU)^{1.35}$
or $r < 150AU$
 $T_m = 20K$ $r > 150AU$

(Rosenfeld et al. 2013)

Temperature structures

• Structure C : densities are coupled with the temperature

$$T_{gas}(r,z) = \begin{cases} T_a + (T_m - T_a) \sin\left[\frac{\pi z}{2z_q}\right]^{2\delta(r)} & \int_{0}^{0} \frac{100}{100} \cos\left(\frac{\pi z}{200}\right)^{200} \frac{100}{r} \left[AU\right]} \\ T_a & \text{if } z \ge z_q \\ z_q = 63(r/200AU)^{1.3} \times \exp[-(r/800AU)^2] & \text{(Dartois et al. 2003)} \end{cases}$$

$$T_m(r, z = 0) = 19K(r/155AU)^{-0.3}$$
 (midplane)
 $T_a(r, z) = 55K(\sqrt{r^2 + z^2}/200AU)^{-0.5}$ (atmosphere)

т [К]

Model channel maps

There are systematic residuals at large radius at velocity $\approx 1 \ km/s$

(Rosenfeld et al. 2013) residual intensity $\Delta I_{\nu} = data - model$ ΔI_{ν} [Jy beam⁻¹] (C) -0.3 -0.2 -0.1 0.2 0.3 CO(3-2) Δδ ['']

Velocity deviation from Keplerian motions

- Assume the disk is rotating in vertical hydrostatic equilibrium
- Orbital velocity (assume circular orbits)

$$\frac{v^{2}}{r} = \frac{r}{(r^{2} + z^{2})^{1/2}} \left(\frac{GM_{*}}{r^{2} + z^{2}}\right) + \frac{1}{\rho_{gas}} \frac{\partial P_{gas}}{\partial r} + \frac{\partial \phi_{gas}}{\partial r}$$
(III) Self-gravity
(I) Stellar gravity (II) Pressure gradient

- Case I : vertical differential rotation
- Case II : radial pressure gradient
- Case III : disk's self-gravity

Case IV : all terms

Velocity difference compared to Keplerian velocity

I, II : slow down the gas high above and at large disk radius

III : speeds up the gas but has smaller effect

Summary

- Continuum image, CO(3-2) channel map, moment map have been done by CASA tasks
- Self-calibration improve the signal and sharpen the emission profile
- Asymmetry in the channel map shows the evidence of double cone structure
- Intensity distribution in channels reveals vertical temperature gradient in the disk structure
- Vertical geometry, pressure gradient and self gravity may cause the deviation of the velocity field from Keplerian velocity