INVESTIGATING THE PROTOPLANETARY DISK AROUND THE YOUNG STAR HD 163296 Cheng-Han Liu (劉承翰), NTNU

Advisor: Prof. Huei-Ru Chen (陳惠茹), NTHU

Outline

- Introduction
- Results
- Disk mass
- Central mass
- The area is not rotation dominated
- Brightness temperature profile
- Conclusions

HD 163296

- Herbig Ae star
- Age: ~5 Myr
- Mass: 2.3 M_{Sun}
- Distance: 122 pc (Sagittarius)
- Disk radius: ~550 AU

(M.E. van den Ancker et al. 1997/A. Natta et al. 2004/NRAO)

- \succ Herbig Ae/Be star is usually 2 to 8 M_{Sun}
- There is a close relation between protoplanetary disk and star formation.
- HD 163296 represents the condition of lower-mass Herbig star.

Credit: ALMA

Disk mass

Sample 100 points from zeroth moment of ¹³CO(J=2-1) and C¹⁸O(J=2-1)

Total intensity of $C^{18}O(J=2-1)$ vs. total intensity of $^{13}CO(J=2-1)$ in logarithmic coordinates.

Model for estimating disk mass (A. Miotello et al. 2016)

Central mass

 $HCO^{+}(J=4-3)$

CO (J=3-2)

• Do linear analysis with the points from each emission line

Spectral Line	Central mass (M _{sun})
CO (J=2-1)	1.98
CO (J=3-2)	1.68
¹³ CO (J=2-1)	1.33
HCO ⁺ (J=4-3)	1.68
C ¹⁸ O (J=2-1)	1.49

 \rightarrow Average central mass is 1.63 M_{Sun}

- Use full points to do linear analysis
- \rightarrow Central mass is 1.57 M_{Sun}

The area is not rotation dominated

Get points from center to outer disk with position angle ~310°

Brightness temperature profile

Thomas Henning & Dmitry Semenov 2013

Conclusions

- Use total intensity of C¹⁸O(J=2-1) vs. ¹³CO(J=2-1) diagram, and compare the model for estimating disk mass (A. Miotello et al. 2016), the disk mass of HD 163296 is about 0.1 M_{Sun}.
- The central mass I calculated from PV diagram is about 1.6 M_{Sun}, but the mass of HD 163296 is 2.3 M_{Sun} (M.E. van den Ancker et al. 1997).
- There is surely an area being not rotation dominated, but it only takes less than 1% of the protoplanetary disk.
- The brightness temperature of CO isotopes show the vertical temperature structure of the protoplanetary disk.