Introduction to General Relativity
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Geodesic Deviation Equation and Curvature tensor
Einstein equations

Geometrical Interpretation of Ricc tensor and Weyl
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1. From Special Relativity to General Relativity

We start from Minkowski spacetime .

Using an inerital coordinate (X%) = (X°,X?) the line element of the
Minkowski spacetime may be written as

ds® =7,, dX“dX” =—(dX °)? +(dX ")* + (dX?)* +(dX °)’

An inertial coordinate is the coordinate used by an inertia observer. , i.e
The observer without acceleration

n is called Minkowski metric tensor

-1 0 0O
0 1 0O
= =diag(-1,+1,+1,+1
=10 0 1 o g( )
0 0 0 1

Different inertial coordinates are related with each other by Lorentz
transformation A

77,uv = naﬂ Aa/‘AﬂV



Equivalence principle
Equation of Motion
ma=m.g
M, . Inertial mass

M, . Gravitational mass(Gravitational charge)

Equivalence principle means m; =m, == d=(

Gravity = Acceleration

One can expect that gravity may be expressed by the observer with
acceleration( curved coordinate system) t



Line element in an accelerated frame

Instead of an inertia coordinate one can freely use any
accelerated observer to set up the coordinate (x#)= (x°, x})

Since two events are covered by two coordinates (X%) and
(x*), we have

a

dX “(x) = X

ox*

dx* =e”, (x)dx”

Thus we have the expression for the line element measured by an
accelerated observer

ds® =7, dX"dX" =75, "« e"p dx“dx” =g,,(x)dx“dx”
Metric tensor in the accelerated frame

0,5(X) =17,,, €"«(X) €"p(X)



Example: Observer with Constant Acceleration
Consider the following worldline in Minkowski spacetime

X°(z)=g7 sinh (g7), X'(r)=g* cosh (g7), —-ow<r<o

(g=const.)
- Y A 5
4-velocity U N 7
s dx° . odxt o N : ./
U°= =cosh(gr), U'= =sinh(gr) S
T dr S R
3-velocity V R R\ 1
B B B f - -, x g
dx* dx*'/dr U*? P P NN
V==—-x=—o =—=tanh (g7) <1 ’ N
dX°® dx°/dzr U° (97) 7 N\
4-acceleration a
i 0 _ Cqut
a’ = =g sinh(gz), a'= =g cosh(gr)
dr dr

2 = = ty2 2 2
a"=d-a=—(a’) +(@") =g Constant acceleration!



Consider the following coordinate system (x°, x1)

Xa(xo,xl):£x1+%jsinh (gx°), X1(x°x) =£x1+%j cosh (gx°),

Xl
XO:T:tanh—ﬁ,

e CRRCUR B

Now we write the Minkowski metric 8
in terms of this coordinate

] 5 o
dX ° = %XO dx® + aaxl dx R
X X

:(X1+£jcosh (gx°) +sinh (gXO),f
g /
) L
dx ! = 8X0 dx’ + 6X1 dx*
OX OX

- (xl + i]Sinh (gx°) +cosh (gx°)
g




) 0
e, = ?(ﬂ - ((xl +i) cosh(gxo),sinh(gxo)J
X g

A i
ol _oX :((XlJr;jsinh(gxo),cosh(gxo)J

T ox#

New metric tensor takes the following expression
Joo = naﬂe‘%eﬁ =—(e%)2+(el0)? = —(1+ gxo)2
011 =17,4€7 e, = (e’ 1) +(e* 1)

—eooeol + eloell =0

Thus in the uniform accelerated coordinate the line element is written as
2 a B 18 4,2 2
ds® =7,.e% e/, dx"dx" = —(1+ o) ) dx; + dx;

This metric is equivalent to the metric of the neighborhood of
Schwarzschild Black hole



In Schwarzschild coordinate, the Schwarzschild solution is
written as

2
ds? = {1-2M | g2 ar +r*(d@* +sin® 0 do?)
r 1 2GM

r

To see the neighborhood of the event horizon, we introduce the
following new radial coordinate x

r=2GM +x°, x°<<1

2 2
ds? = — ZGI\;I( —dt” +4 ZGM2+X x“dx* +r?(d@” +sin® 0 do°)
+ X X
XZ

~S
~

v dt* +8GM dx’ + (2GM + x*)(d8” +sin’ @ dgp?)

Compare this with the line element for the uniformly accelerated observaer

ds® = —(1+ gx* )2 dx? + dx;



Doppler effect and event horizon

Energy of a photon k measured by an observer U

—

E=—k-U .
Our accelerated observer ~

U/ (r) =( cosh(gz), sinh(gzr), 0, 0 ) .

g

g
f
»

/1"

Photons are continuously emitted to the observer ey

from the origin X = 0 . é

IZ:(a), w, 0, 0) ‘

Observed energy
w,. =—k-U, = o cosh(gr)—w sinh(gz)

=we? >0 asr—ow
This observer can never see any photon emitted after X° > 0.

Thus this observer can see only spacetime region X1 >Xx° even from
infinite future. The boundary X =X° is called event horizon.
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Equation of Motion(Geodesic equation)

Law of Inertia

A Particle with No External Force(Free Particle) moves on a straight
line with a constant speed( Uniform Linear Motion).in any Inertial frame

du o
di = in any inertial frame
U= Z—i : 4 velocity along a world line ¥ = (1)
& o ~ dX“ :
X“=X*(1), U?% = Inertial frame
%= %) — dA
dx”
X* =x*(1), U*= 17 Accelerated frame

Relation of components between inertial and accelerated frame
dX*  oX“ dx“
dA ox* dA

4-vector in an accelerated frame e
_ ] X

U#“=e2U“ withe? = —
oX

U< = =e”, (x)uU”

(24



Thus the law of Inertia takes the following form in an accelerated frame
o dY “ d
di dA

(edﬂU”):edﬂ o+ A”U“

Since d/dA is the derivative along the world line, we can write

de”, :dx oe” , :Uvae L oUT 6",
dA dr ox” ox" g

Here we have introduced the concept of connection I' as follows

a

e (Xx+dx)=e",(x)+T7, (x)e, (X)dx" = 8; = =T" e%,
X

uv

Thus we have

du”

é
€ u

+ U Vrpluve&pu H — O

du”

é
€ p

+U'T”, U% =0



Multiplying both side by the inverse matrix e, =2

a gxa’
y7i
dU +F/uanpUO- :O

We can write this equation as

dx” oU* ouU”
l.h.s = +T*,,UPU% =U” +T4,,U°% |=U”V U*
ox” ox”
Thus the law of inertia takes the following form in an accelerated frame

U’V U“=0
Compare this with the equation in an inertial frame
U%_U”’ =0

Thus the law takes the same form if we use the covariant derivative instead of
partial derivative

Oy >V,

This is mathematical expression of Einstein’s relativity principle



Properties of I
1. Symmetry

7 28 02X “* OX”
() == w7, =€’z =I'",, where e’z =——
X OX*ox" OX
2. The expression by the metric tensor
gyv = Uaﬁea” eﬂv

8gﬂv
OX”

= (edlu,p eﬂv +edlu eﬂv,p ) 770{,3
:(I”ppedgeﬂv-+e&ﬂrwg7eﬂ0)7hw
:Faﬂp go‘v + FO_VP gﬂa

‘ 6guv + agpu _agvp —92
ox” ox"  ox“

- o 1 oA 69 A 69 A ag 172
F y — — - + -
=39 ( ox’  ox"  ox’

gﬂGFO-pV




Let's calculate equation of motion observed by an accelerated observer

ds® = —(1+ gx* )zdxg +dx;

Christoffel symbol are

Mop , 0uo 99 ag
o oo| “Yog 20 YYap 0 © Eo _
. g £6x ox’  ox° jjr 29 o =g

2
1
2

We use proper time 1 as the parameter

dr? =057 = [+ 9 F (o (e = (o P 1 9 V2] v = g_ﬁ

0 @
[Mop = 11( 2l 6g Jos j = oo = —% g B =1+ gx")g

OX* 8xﬂ ox*

:>r:x°\/(1+gxl)2—v2 =X’ = d - zf(l—glef%VZj
2

Then the 4-velocity becomes

dx” 1
Ut=—"t — 1V
dr 1+ gxt)2—V? V)




Now consider Newtonian situation where g<<1, V?<<1
ds® = —(1+ ngl)dx§ +dx;

[P0~ g, Moo = g
U“~(1V)

Oth component of geodesic equation
du®
dr

15t component of geodesic equation
du* dv
+I UV =0=>—+g=0
T dt

+2I’°U%U'=0=0=0

Newton’s EOM



Newtonian Limit in general

Spacetime is nearly flat and the typical velocity of the system is much
smaller than the speed of light

g=n+h, |hl<<1
Proper time
dz* =—g,,dx“dx” =—(1,, +h,,;)dx*dx”
= dt* —dx* —h,,dx”dx”

:dt{l— dx” dxﬂ} ‘ dr =dt+O(v?, h)

os dt dt

Thus the 4-velocity takes the following form.

U“:dx L X _@ v
dr dt




au +I“,,UPU° =0 mm) A e =0

dr dz

| 1
I'00 = > g ﬂ(gﬂo,o + G040 — goo,ﬂ)

1 1
:Eg k(zgko,o —Jook) = _55 khoo,k

dv' 1 _,
‘ F = E o khoo,k
Where we neglect the term with time derivative compared with the term
with spatial derivative
A, AIT L

—xV<<]
A, A/L T

Thus we recover the Newtonian equation if we take hyg as —2¢ ( ¢: Newtonian
gravitational potential)

Joo = —1+2¢




Flat Minkowski spacetime is not enough to
describe gravity

Acceleration can produce only uniform gravitational field Y
| X
X' = 0,4(X)

X +6 X = 0,9(X+K) = 0,(X) + 0,4(X)x) +0(5¢C)

X + X

5 X' =0 p(X) S’
Non-uniform gravity appears as the difference of

Inertial frame at different spacetime point(event)

Einstein regards this difference as the effect of curvature of
spacetime

Thus we need curved spacetime instead of Minkowski spacetime
when gravitational field exist



How to describe Curved Spacetime

Line element of spacetime
2 y7i 1%
ds® =g,,(x) dx“dx

Global inertial frames exit In Special Relativity because the spacetimes
is globally flat

In curved spacetime inertial frames exit only locally (Local inertial frame)

Local inertial frame around an event p is characterized by the
following properties

g&ﬁ ( p) — naﬁ
0,55(P)=0
0.7 5(P) %0 mmm)  Effect of Curvature

Knowledge of the metric tensor is not enough to say if the
spacetime is flat or curved



Simple example: 2D sphere S*

In spherical coordinate (0, ¢) the distance between neighboring
points with coordinate difference (d6, d¢) t on sphere of radius a is

ds* =a*(d@” +sin* 6 do*)
Introduce new coordinate around a point O (9 = % @ = 0)
X' =a(@—-rx12), XxX*=ag

In this coordinate the distance is written as

)
ds? = (dx*)? + cosz(xj(dxz')z
a

x*
g =1 912 921_0 gzz_COS(aj

In the neighborhood of point O:| x" / a |<< 1

, of X XY XY’ 2
g2 = COS [a]zl_(a) +O{( j} = 92511 (0) -T2



In Newtonian case the difference of two neighboring two inertial frames

are described by tidal force

s X R4 X
2
A:dzxi:—a(b(_x) X
dt X'
d* i P(X+¢)
B: ="
a ) ox' T
d* O°P(X) .«
mm B-A—('=—F+ i
di 4 WP ¢ Tidal force
Corresponding calculation in curved spaceime
A:x“(A) geodesic through A S
B:x“(1)+{*(4) geodesic through B A B
2 a a a a
m) B-A: d2§”+§”1“”aﬂ,pdx ix +2I'* ax” do =0

di di dA AL dA

We have to make this equation into the covariant form (the form
looks same in any coordinate system)

i =U“0, —>£ =u’V_
da DA



The covariant expression
D 2
DA

- é’” :( T s a0 =T a0 p +F“a51“5ﬂv —Fﬂml—‘gav) u“uvgﬂ
N i

—~

R*.es Riemann tensor

a

R'u VB — Fﬂﬂv,a _F'uav,ﬂ +Fﬂa5r§ﬂv _rﬂﬂ5r§av

Also the definition of the covariant derivative for vector gives the following
formula

ViV u'=(V, V,-V, V )u"=R% U’

Ricci scalar

R, =R%u;s=0"R

uvaf

Ricci Tensor

R=R" = gaﬁRaﬁ



Detailed calculation

D2
DA
=u“d, U’V ;") +UuT LU’V ¢ *

¢H=u"V, UV ,¢*)

d (ié’ﬂ _I_I"ﬂﬂyé’ﬂuV)_l_uarﬂay(;_/lé’?’ +F7ﬂ5§ﬂu§)

:d/I dA
d*s d¢” du”
= +UT 5 o P07 +TH 5 —=—U" +T45, 87
22 By é’ By di ﬂyg di

d Y
+UT*,, di +U°T# o, T7 psCPu’

24’# 5 dé/}/ 5 5
= dﬂ,z +uarluﬂ7,0!é’ u}/+2uar'ua;/ dﬂ _Fﬂﬁyé’ﬂryaé‘uau +uar‘ﬂayr7ﬂé,é’ﬂu

d(ﬂ
=T 5,u%U” =2 pu% ——
G T apy U=

d e
+UT 5l 7U7 + 20Ty, di —T#5, ¢ T7 0suU° +UT o, I psCPU°



Newtonian limit

D ;iR

DA LUUE”

A—>t, u®~(100,0)
0° i j
Eg ~ R oojé/J
Joo & —1-2¢

a o¢
Rl = ox'ox




Symmetry of Riemann Tensor

1' Raﬂ,uv = _Rﬂa,uv = _Raﬂv,u
2. R =Ruus
3. R TRy TRup =0 R4, =0

Only 2 in 3 conditions are independent

For example the condition2. is the result from the condition 1 and 3
2R . =R . —R

Poyv

+R

afuv

+R

afuv

=R

ofuv Puve Pvou

=R, -R_ —R

apuv upver vBay

aﬁuv T (Ruvaﬁ uaﬁv ) T (Rvauﬂ T Rvuﬂa )

=2R +(R

aofuv + Rayvﬂ Ravﬂy)

_J

uvaﬂ

~

O



Number of Independent components of Riemann Tensor

R =R ] = Number of pair [a, 5] is %n(n-l)

[eB]luv
Roipny = 0 — Number of the condition is n ,,Cs

apuv

In n-dimensional spacetime

(n(n_l)j2 _pMO=D-2) 1o gy
> 3 12

Thus indep. number of Riemann tensor in 4-dim. Is 20

Ricci Tensor

. .. .1
Ruv = Ruv —> Indep. number of Ricci tensor is > n(n+1)
Thus indep. number of Ricci tensor in 4-dim. is 10

Spacetime is flat if and only if Riemann tensor vanishes.

Einstein equation in vacuum R, =0

» Vacuum spacetime is not necessarily flat! Black holes, GW



Weyl Tensor(Conformal Tensor) (n>3)
Riem=Ricci+Wey!I

C R

opuv afuv n— 2(g0w Bv gav Bu gﬂﬂRav+gﬂv au)
R

N
(n-1)(n-2)

(900940 — 90 910 )

Weyl Tensor has same symmetry with Riemann Tensor and the
following symmetry

Independent component of Weyl Tenor

1 5, 1 1
En (n —1)—§n(n+1)_12 n(n+1)(n+2)(n+3)

Black hole solution and Gravitational wave solution of Einstein equation
have non-zero Weyl Tensor



Bianchi ldentity

R +R + R 2. =0

afuv,A aflu,v

This identity can be easily confirmed in an inertial frame

(04 (04 (04 1 oo
R Puv = r Bv.u _F Puv = E g (go-v,ﬂﬂ o gqu,ﬂv + gﬂ,u,av o gﬂv,o‘y)

R o = %(gav,ﬂﬂ =G T Ypuor — I o)
Contracted Bianchi identity
J“(R epvia + R apiuw +R apain) =0
- R LViA — R Blv T Raﬂv,z;a =0
gﬂV(R pria—R v + R paa) =0
R.,—R’25p—R%4=0G%0 =0



Contracted Bianchi Identity

R opuvii + R apiuwvy + R apvin =0

=) g%(R apwin + R apruw + R apain) =0

R si—R s +R%pa =0

gﬂV(R pria — R prv + Raﬂv/l;a) =0

.

R A R'B/l;ﬁ — Raﬂ,;a :O @Gal;a :O

Y%

Einstein Tensor: G = W—%gWR



Geometrical Meaning of Riemann and Weyl
Propagation of light bundle in gravitational field
The propagation is described by Geodesic deviation equation
D?
DA’

& =Rk kS, K2=0, k*V k¥ =0,
Consider 2-dimensional spatial plane perpendicular to the direction of
light propagation
Unit orthonormal base in this 2-plene
6, =(e"1, e*2) Lk, e“k, =0, e“e,, =3,
D " S
ae“a =k“V_e“a=0  Transport this vector parallelly along k

Then we project 4-vector 5 into this plane

¢*(4) =Zfa(ﬂ~) e%a



Then we can derive the following

d?/ 1
_ B
dﬂ/za = _E Rﬂvkykvga + Zb:C uvaf3 eﬂakvkae b Eb
To see the change of the area more clearly we introduce the following
de,

dﬂd E;( eéab_l_o-ab_'_wab)gb

Oap = Opas Tro = 014 + Oy = O’ Wy = —Wyy

Then the change of 6 and o along the light ray can be written as

“ Vi 2al
ﬂvaﬁeakkeb

The area of the cross section of the light bundle changes according
to the Ricci tensor, and the deformation of the cross section is
generated by Weyl tensor

@

O

+

S

+

O

Q

0



1

do +0°=—=R k"K' -
2 M

di
Ricci Forcussing eyl Forcussing

Acutually Ricci forcussing is generated by the metter
distribution through Einstein equation

1
R,uv =87 G (T,uv _Eg‘”T)

99, 92 = 46T, k*k* -

This is the starting equation to derive the formula for distance fluctuation by
inhomogeneous matter distribution

édFRW z.n S -
OIFRVV((s)) _Iz dZ(Z Z)Z(4ﬂGaz5pm+Gz)+
L S

0 Xs



Detailed calculation.

First we prove that vector 5 can be taken to be perpendicular to the
direction of propagation k.

KV, (k-&) = (k°V k"), +KK“V &, =0

dg” Vv, d¢” « v dg”
gw(x+§)(k” 7 j( d/lj:0:>§ gwlpk”k +2gwk” 7 =0

< kk'V, g, =0

2
Substitute £* (1) = Zéa(i) e into geodesic deviation equation.

a=1

D* d*¢,
il Z 7 €= Rk Z@ e’

2
€, X dd;;a = R”vaﬁkvkaZZb e’y €as EZKabﬁb
b b

where K, = Rﬂmﬁe”akvkaeﬂb =K,

a



K., can be expressed as the sum of Ricci part and Weyl part as follows.

1

Ko == R KK, +C, 0 ek ke

pvop3

Where we have used

R,uvaﬂ (g Ha Rv,b’ g Rva g va u,[)’ Vﬂ ua )

1
-—=R (gua 9yp — gﬂﬂgva) T Cuvaﬂ

6
k*=0, k“e,, =0
Thus the change of the 2-vectors ¢, along the light ray can be written as follows
d?/ 1
a __ ML,V U LV, aAP
diz ——E R,uvk k ga +Zb:C uvofs e ak k € b fb

Then we rewrite this equation into three equations for the divergence, shear
and rotation of the light bundle

d/
d; EZ( 9§ab +Gab +a)ab)€b
b




Since vector f IS perpendicular to the vector k, we can take Z= % for

some parameter y, and vector { and vector k are commute each other

(£, k]=0 = ;avakﬂzk“vagﬂzz‘:ﬁ

de,
dA

e )
‘ d; :(Vaklu) e,ua €b gb

e’y

e:u

a

Vakﬂzga % =

_ JTRPN

20 = V*k , :convergence
op =V K, e’ —%(V”kﬂ)% : shear

w,, =V, K, e e’ :rotation




Derivation of the Optical Scalar Equation

d*s, daa do,
T Ezb:( <9§ab-|—0ab+a)ab)— Z( S, + d,1b+ d/lb) b
do, do,
:bz (06, +0,,+0,)(0 6, +0, +0, )1, +Z( ab+ d,lb N dib) b
=2/ (0" +o" -0’ +d—6)5ab+da +200,, + 4% — 1 200, | 1,
b dA dA d/l

where we used

[Gl o, j ( 0 a)J
Gab — . a)ab =
O, —0 —-w 0

2
o 0 ) , , ,
O O = ) =0 5ac, O :(01) _|_(02)
0 o
—a)2 0 25
.., = = —m
ab~~bc ac
0 — "’

(ow) o = —(wo) c



Compare this expression with

2
d fa :—ER kﬂkvfanZC e eﬂakvkaeﬂb fb
b

dA’ 2

We obtain the following

99 0 v o7 —? =— 1R k#k”
dA 2
d"/{‘b +200, =C,,e“k ke’
90 4 200, =0

A

Since the equation for rotation is homogeneous, we can assume that the
rotation vanishes identically as far as it vanishes initially



Einstein Equation

Newtonian gravity can be described by Newtonian potential ®

which satisfies Poisson equation with the mass as the source

Ap=4r Gp Mass density

In Newtonian limit we know

Joo = —-1+2¢

Thus the |.h.s of Poisson equation is the Newtonian limit of the 00
component of some 2" rank differential equation for the metric tensor

‘ The mass density, rather the energy density .p inthe r. h.s of
Poisson equation should also the 00 component of some 2"d

rank tensor (stress energy tensor/energy-momentum tensor).
T =p

General form of stress energy tensor for perfect fluid
T, =(p+P(p))u,u,+Pg,, =pu,u,+Ph,,
h

ap = Yo TUUg o 3 metric in hypersurface orthogonal to 4-velocity u



Find a 2" rank tensor equation
Gaﬂ = kTaﬂ

which reduces to Newtonian Poisson equation in Newtonian limit.

* Ggup contains 2nd order derivative for the metric tensor

* Stress energy tensor satisfies the conservation law.

VT, =0
* Ggp also satisfies
VG, =0

These requirements are satisfied by the following choice.

1
G,uv — R,UV_ERg,UV

Thus we arrive at Einstein equation

1
R v —E Rg,uv :8ﬂGTa,B

7,



Detailed calculation of Newtonian limit

The metric tensor is close to the flat Minkowski metric in Newtonian limit
g=n+h with |hj<<1, hy, =-2¢
We use the following form of Eifstein Eqgn.
R =K (T =28, T)

y73%
Riemann tensor may be approximated as

R o =— (h +h )"‘O(h )

Pu.av ﬁv au

94
‘ R uv :E( hav,aﬂ_h’av—l_haﬂ,aV_hﬂv’a )
where we regard h as a tensor field on the flat Minkowski spacetime
haﬂ — aﬂhﬂﬂ’ h — Uaﬁh
Thus the OOcomponent of the Einstein equation is

1,
ROO—_( 2h%0.a0 — hOO_hOO,a )z_zhoo,i’ =A¢

av.fpu au,ﬂv

where we used the fact that the time derivative may be neglected compared
with the derivative in Newtonian limit.



The r.h.s of Einstein equation
Ty = p=0(h)
T =0T, =n" -h")T , =-Ty,+T'i +O(h?) =T, +O(h* hv?)
1 1
m Ty _Egoo T zEP

Thus the 00 component of Einstein equation becomes to

1 1
Roo:K(Too_EgooT) = A¢—§Kp

Compare this equation with Poisson equation A¢ = 4nGp , we

arrive at
k=81 G

Thus we have the required equation

R V—%Rgaﬂ =87 GT,

7



Existence of Vacuum Solutions

Vacuum Einstein equation
G,=0&R, =0

This equation does not necessarily indicate that the spacetime is flat
because only 10 components out of 20 components of Riemann tensor
vanishes

Example of vacuum solution

* Gravitational Wave solution

- Black hole solutions

In 3D spacetime the independent number of Riemann and Ricci
tensor is both 6. Thus the vacuum is flat in 3D spacetime.



Cosmological Constant

One can add the cosmological term in Einstein equation without
contradicting the conservation law

G,+Ag, =87zGT,

A
G,, =87 G (TW o gwj =87 G (T, +T )

) Vacuum energy

A
T = —
(vac) uv 87ZG g

=(p, +P, )uﬂuv+P d..

(A)ﬂV

A

- P =
‘ IOV8.C 87ZG’ vac 87ZG



Gravitational Field around nearly static suorce

The spacetime is nearly flat

g=n+h, with |h | <<1

Neglecting the second order in h

1
Raﬂyv . (hav,ﬂ,u _ ha,u,ﬁ’v + hﬁu,av ﬁv oyl ))+ O(h )
K
R

RL — yVRL Ay

o = Ruap

L _ _ofpl
R™ =n""R,
GL — RL _E RL

uv = 7% 5 77;11/

1 1

of o
= P P M =) =5 (™ = 0)



Harmonic gauge( Lorentz gauge)

r—]ﬂv,v — O
Lineraized Einstein equation in harmonic gauge

0“0 h*" =-16x G T

82
[5a@a =77aﬂ§a@ﬁ :—6t2+Aj

Analogy with EM

Maxwell Eqn.
F,=0,A —-0,A,

F'UV,V :472- jlu

A, =0=0"0, A" =—4r j*



Note; Harmonic?

Harmonic condition for coordinate

gV VvV x =0= 8ﬂ(ﬁg”vevx“):oj5ﬂ(ﬁgua):0

g =.,-gg“*| Landau-Lifshitz variable

g =n*—h* mp 0,h"=0

'’ =J-gg" ™ (-9)" =(-9)°(-9) " =-9
det A=exp(Trlog A)
g =det(n—h) =detn(l —*h) =—det(l —5"h)
det(I —n*h) =exp(Trlog(l —n*h)) ~exp(-Trn*h) =1-h*
—g =[det(l —=*h)]" =1+h, h=h*

9" = (-9)2 9" = W+ M R = - (1 -




For nearly static source we can neglect the time dependence
Ah*==-162 GT#*"

The solution which goes to 0 at spatial infinity

y73%
h (%) = 4G [ d® yT (y)
X—y|
Far field (AGM
M =|d’y T™(y)
r' o
— . 4G Lo | 4GPY e
h”(x)zﬁjdsw (N=1—— P'=[dyT"()
J )
4GrZ Z|J EJdByTIJ(y)




Matter Quadruple moment

1" = [d% vy T(9)

1%, =0 linearized theory
I.ij :Idsy yiyj -I-oo’0 :_J‘dsy yiyj -I-Ok’k :—2J‘d3y y(i-l-j)o ~0
M =—2[d% y'T ", =2[d% y'T ™ =2[d°y T" =Z" =0

We can always chose the spatial coordinate in which the center of mass is
the origin

D' =[d’y y'T*(y)=0
D’ E:d:”y yi-l—oo’O:_J‘dsy yi-I-Ok’k:J‘dSyTOi ~0

=1 EJ‘dSyTOi =0
O R NN Y

I




ho — ﬁoo _EUOOH _ 2GM |
2 r
hOi :O,
=L gy 28M
2 r

Finally we have the gravitational field far from a nearly statoc source

ds® = —(1— 2GM j dt* +(1+ 2GM j (dx® + dy® +dz?)
r r

or

ds? = —(1+2®) dt® +(1-2d) (dx* +dy* +dz?)

@(2):—do3y|;’(_yy)/|






