
Introduction to General Relativity 



Contexts

• Basic Property of Gravity

• Curved Spacetime

• Geodesic Deviation Equation and Curvature tensor 

• Einstein equations

• Geometrical Interpretation of Ricc tensor and Weyl 
Tensor



We start from Minkowski spacetime .
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η  is called Minkowski metric tensor

１．From Special Relativity to General Relativity

Using  an inerital coordinate Xഥ𝛼 = 𝑋ഥ0, 𝑋 ҧ𝑖 the line element of the 

Minkowski spacetime may be written as







  

Different inertial coordinates are related with each other by Lorentz 

transformation Λ

An inertial coordinate is the coordinate used by an inertia observer. , i.e

The observer without acceleration



Equivalence principle

Gravity = Acceleration

Equation of Motion
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Gravitational mass(Gravitational charge)

Equivalence principle means 𝑚𝐼 = 𝑚𝐺 ga




One can expect that gravity may be expressed by the observer with 

acceleration( curved coordinate system) t



Line element in an accelerated frame
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Metric tensor in the accelerated frame
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Instead of an inertia coordinate one can freely use any 

accelerated observer  to set up the coordinate (𝑥𝜇)= (𝑥0, 𝑥𝑖)

Since two events are covered by two coordinates 𝑋ഥ𝛼 and 

(𝑥𝜇), we have 
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Thus we have the expression for the line element measured by an 

accelerated observer



Example: Observer with Constant Acceleration 

4-velocity 𝑈

3-velocity V
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（ｇ=const.）

Consider the following worldline in Minkowski spacetime

Constant acceleration!
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Consider the following coordinate system (𝑥0, 𝑥1)
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Now we write the Minkowski metric

in terms of this coordinate
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Thus in the uniform accelerated coordinate the line element is written as 

New metric tensor takes the following expression

This metric is equivalent to the metric of the neighborhood of 

Schwarzschild Black hole 



)sin(
2

1

2
1 2222

2
22  ddr

r

GM

dr
dt

r

GM
ds 













)sin)(2(8
2

)sin(
2

4
2

222222
2

222222

2

2
2

2

2
2





ddxGMdxGMdt
GM

x

ddrdxx
x

xGM
dt

xGM

x
ds











1    ,2 22  xxGMr

In  Schwarzschild coordinate, the Schwarzschild solution is 

written as

To see the neighborhood of the event horizon, we introduce the 

following new radial coordinate x 
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Compare this with the line element for the uniformly accelerated observaer



Doppler effect and event horizon

Energy of a photon k measured by an observer U

UkE
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Our accelerated observer

Photons are continuously  emitted to the observer

from the origin 𝑋ഥ1 = 0
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This observer can never see any photon emitted after 𝑋ഥ0 > 0.

Thus this observer can see only spacetime region 𝑋ഥ1 >𝑋ഥ0 even from 

infinite future. The boundary 𝑋ഥ1 =𝑋ഥ0 is called event horizon.

Observed energy



Equation of Motion(Geodesic equation)

Law of Inertia

A Particle with No External Force(Free Particle)  moves on a straight 

line with a constant speed( Uniform Linear Motion).in any Inertial frame 

0
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𝑈 =
𝑑 Ԧ𝑥

𝑑𝜆
: 4 velocity along a world line Ԧ𝑥 = Ԧ𝑥 𝜆
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Inertial frame

Accelerated frame
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Relation of components between inertial and accelerated frame
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4-vector in an accelerated frame

in any inertial frame
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Thus the law of Inertia takes the following form in an accelerated frame

Since d/dλ is the derivative along the world line, we can write

Here we have introduced the concept of connection Γ as follows


















 e

x

e
dxxexxedxxe     )()()()( 






Thus we have
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Multiplying both side by the inverse matrix 𝑒 ഥ𝛼
𝜌

=
𝜕𝑥𝜌

𝜕𝑋ഥ𝛼 ,   

We can write this equation as 























UUU

x

U
UUU

x

U

d

dx



















l.h.s

Compare this with the  equation in an inertial frame

Thus the law of inertia takes the following form in an accelerated frame

0 
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Thus the law takes the same form if we use the covariant derivative instead of 

partial derivative

 

This is mathematical expression of Einstein’s relativity principle



1. Symmetry
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2. The expression by the metric tensor

Properties of Γ
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We use proper time τ as the parameter 
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Let’s calculate equation of motion observed by an accelerated observer

Christoffel symbol are
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Then the 4-velocity becomes
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0th component of geodesic equation

1st component of geodesic equation 

Now consider Newtonian situation where g<<1, 𝑉2<<1 
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Newton’s EOM



Newtonian Limit in general

Spacetime is nearly flat and the typical velocity of the system is much 

smaller than the speed of light
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Proper time

Thus the 4-velocity takes the following form.
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Where we neglect the term with time derivative compared with the term 

with spatial derivative
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Thus we recover the Newtonian equation if we take ℎ00 as  −2𝜙 ( 𝜙: Newtonian 

gravitational potential) 
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Flat Minkowski spacetime is not enough to 

describe gravity
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Acceleration can produce only uniform gravitational field

Non-uniform gravity appears as the difference of 

inertial frame at different spacetime point(event) 

Einstein regards this difference as the effect of curvature of 

spacetime

Thus we need curved spacetime instead of Minkowski spacetime 

when gravitational field exist



How to describe Curved Spacetime

Line element of spacetime


 dxdxxgds )(2 

Local inertial frame around an event p is characterized by the

following properties
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Effect of Curvature

Global inertial frames exit In Special Relativity because the spacetimes 

is globally flat 

In curved spacetime inertial frames exit only locally (Local inertial frame)

Knowledge of the metric tensor is not enough to say if the 

spacetime is flat or curved 



Simple example: 2D sphere 𝑆2
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In spherical coordinate 𝜃, 𝜑 the distance between neighboring 

points with coordinate difference 𝑑𝜃, 𝑑𝜑 t on sphere of radius a is

Introduce new coordinate around a point O 𝜃 =
𝜋

2
, 𝜑 = 0
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In this coordinate the distance is written as
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In Newtonian case the difference of two neighboring two inertial frames 

are described by tidal force
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Corresponding calculation in curved spaceime
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Tidal force
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We have to make this equation into the covariant form (the form 

looks same in any coordinate system)
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The covariant expression 

Also the definition of the covariant derivative for vector gives the following 

formula
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Ricci Tensor

Ricci scalar  
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Detailed calculation
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Newtonian limit
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Symmetry of Riemann Tensor
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For example the condition2. is the result from the condition 1 and 3
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Only 2 in 3 conditions are independent



Number of Independent components of Riemann Tensor
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In n-dimensional  spacetime

Number of pair 𝛼, 𝛽 is 
１
２n(n-1)

Number of the condition is 𝑛 𝑛𝐶3

Thus indep. number of Riemann tensor in 4-dim. Is 20  

Ricci Tensor

  RR Indep. number of Ricci tensor is 
1

2
n(n+1)  

Thus indep. number of Ricci tensor in 4-dim. is 10  

Spacetime is flat if and only if Riemann tensor vanishes. 

Einstein equation in vacuum 0R

Vacuum spacetime is not necessarily flat! Black holes, GW



Weyl Tensor(Conformal Tensor) (n>3)
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Weyl Tensor has same symmetry with Riemann Tensor and the 

following symmetry
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Independent component of Weyl Tenor
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Riem=Ricci+Weyl

Black hole solution and Gravitational wave solution of Einstein equation 

have non-zero Weyl Tensor



Bianchi Identity
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This identity can be easily confirmed in an inertial frame

Contracted Bianchi identity
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Contracted Bianchi Identity
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Geometrical Meaning of Riemann and Weyl
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The propagation is described by Geodesic deviation equation
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Consider 2-dimensional spatial plane perpendicular to the direction of 

light propagation
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Propagation of light bundle in gravitational field
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Then we project 4-vector Ԧ𝜁 into this plane

Unit orthonormal base in this 2-plene 

Transport this vector parallelly along 𝑘
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Then we can derive the following

To see the change of the area more clearly  we introduce the following 
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Then the change of θ and σ along the light ray can be written as 

The area of the cross section of the light bundle changes according 

to the Ricci tensor, and the deformation of the cross section is 

generated by Weyl tensor  
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Ricci Forcussing Weyl Forcussing
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Acutually Ricci forcussing is generated by the metter

distribution through Einstein equation 
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This is the starting equation to derive the formula for distance fluctuation by 

inhomogeneous matter distribution 
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Detailed calculation.

First we prove that vector Ԧ𝜁 can be taken to be perpendicular to the 

direction of propagation 𝑘.

Substitute                                      into geodesic deviation equation. 

where
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Then we rewrite this equation into three equations for the divergence, shear 

and rotation of the light bundle
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𝐾𝑎𝑏 can be expressed as the sum of Ricci part and Weyl part  as follows.   

Where  we have used 

Thus the change of the 2-vectors ℓ𝑎 along the light ray can be written as follows
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Since vector Ԧ𝜁 is perpendicular to the vector 𝑘, we can take Ԧ𝜁 =
𝜕

𝜕𝜒
for 

some parameter 𝜒, and vector Ԧ𝜁 and vector 𝑘 are commute each other
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Derivation of the Optical Scalar Equation
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Compare this expression with 

We obtain the following

Since the equation for rotation is homogeneous, we can assume that  the 

rotation vanishes identically as far as  it vanishes initially 



Einstein Equation
Newtonian gravity can be described by Newtonian potential Φ

which satisfies Poisson equation with the mass as the source

 G4 Mass density

In Newtonian limit  we know 

2100 g

Thus the l.h.s of Poisson equation is the Newtonian limit of the 00 

component of some 2nd rank differential equation for the metric tensor

The mass density, rather the energy density .ρ in the r. h.s of  

Poisson equation should also the 00 component of some 2nd

rank tensor (stress energy tensor/energy-momentum tensor). 
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General form of stress energy tensor for perfect fluid

3 metric in hypersurface orthogonal to 4-velocity u 
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Find a 2nd rank tensor equation 

which reduces to Newtonian Poisson equation in Newtonian limit.
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These requirements are satisfied by the  following choice.

• 𝐺𝛼𝛽 contains 2nd order derivative for the metric tensor

• Stress energy tensor satisfies the conservation law.

• 𝐺𝛼𝛽 also satisfies 
0 
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Thus we arrive at Einstein equation
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Detailed calculation of Newtonｉａｎ ｌｉｍｉｔ
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We use the following form of  Einstein Eqn．

The metric tensor is close to the flat Minkowski metric in Newtonian limit 

Riemann tensor may be approximated as 
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where we regard h as a tensor field on the flat Minkowski spacetime 

Thus the 00component of the Einstein equation is

where we used the fact that the time derivative may be neglected compared 

with the derivative in Newtonian limit.
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Thus we have the required equation
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Compare this equation with Poisson equation Δ𝜙 = 4𝜋𝐺𝜌 , we 

arrive at
G 8

The r.h.s of Einstein equation

Thus the 00 component of Einstein equation becomes to 



Existence of Vacuum Solutions 

00   RG

Example of vacuum solution

・Gravitational Wave solution

・Black hole solutions

Vacuum Einstein equation

This equation does not necessarily indicate that the spacetime is flat 

because only 10 components out of 20 components of Riemann tensor 

vanishes

In 3D spacetime the independent number of Riemann and Ricci 

tensor is both 6. Thus the vacuum is flat in 3D spacetime.  



Cosmological Constant
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Vacuum energy
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One can add the cosmological term in Einstein equation without 

contradicting the conservation law 



Gravitational Field around nearly static suorce
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The spacetime is nearly flat
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Neglecting the second order in h



Harmonic gauge( Lorentz gauge)
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Lineraized Einstein equation in harmonic gauge
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Analogy with EM
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Maxwell Eqn.



Note; Harmonic?
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Harmonic condition for coordinate
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Landau-Lifshitz variable
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The solution which goes to 0 at spatial infinity

Far field 
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For nearly static source we can neglect the time dependence 



Matter Quadruple moment
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We can always chose the spatial coordinate in which the center of mass is 

the origin
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Finally we have the gravitational field far from  a nearly statoc source
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