
Homogeneous & Isotropic Cosmology 

• RW geometry 
• Redshift 
• Expansion law 
• Distance-redshift relation 



RW geometry 

•  Redshift galaxy survey shows that the spatial distribution of galaxies are 
homogeneous over 100 Mpc  

•  Temperature fluctuation in CMB is isotropic  

3D space is a constant curvature space 

Theorem:  

Riemann tensor of 3-dimensional constant curvature space may be written  
as follows 
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Constant Curvature Space 
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This can be regarded as a symmetric mapping in 3D vector space	
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This mapping should be proportional to the identity mapping.	

3D Riemann Tensor	

If space is isotropic, then there will be no special direction . 
This means that three eigenvalues  of the mapping are the same . Otherwise,  the 
special eigenvalue and the corresponding eigenvector defines the special direction 	
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This contradict the isotropy of space. 
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Constant curvature space is classified into 3 types depending on the 
signature of K 	

Bianchi identity  	
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Flat space	

3-sphere	

3-d hyperboloid	
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From this  

Ricci tensor and Ricci scalar take the following form 



Explicite form of the line element 
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Since space is isotropic one can foliate space by 2D sphere   

Then the Ricci tensor of this metric is calculated as  
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Substitute this expression into 

gives the following equations 
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Finally we have the following line element for constant curvature space 



RW line element 
We take a comoving spatial coordinate （​𝑥↑𝑖 ), i=1,2,3  

This means each galaxy has a constant spatial position 

 We take the proper time of galaxy as a cosmic time t 
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Thus 4D line element may be written as  
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Redshift 
The energy of a photon ​ｋ  observed by an observer ​𝑢   
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The ratio of energy emitted at ​𝜆↓𝑆   and observed at ​𝜆↓𝑂  is  

Consider the rest frame of the observer and he received  a photon emitted  from 
a galaxy with radial 3 velocity 𝑉=𝑎​𝑑𝜒/𝑑𝑡  
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From isotropy of space, the observer is located at the origin of the spatial coordinate so 
that a photon propagate radially  
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No peculiar motion in an exactly homogeneous and isotropic universe 



Dynamics of Universe 
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+ Einstein equation 

Friedmann equation 

We have 3 kinds of energy 

Λ++= ρρρρ rm

with ​𝑃↓𝑚 =0,  ​𝑃↓𝑟 = ​1/3 ​𝜌↓𝑟 ,  ​𝑃↓Λ =− ​𝜌↓Λ  
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Friedmann equation in terms of density parameter	
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Thus Universe is flat when the total density parameter is equal to 1 
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Friedmann equation in terms of the present density parameters	
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Hubble parameter as a function of redshift 



Evolution of density parameters with totally flat case(Λ=0) 
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In the following we assume totally flat universe K=0 	
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Important epoch in totally flat universe 
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For a=1(at present) 

Since cosh 𝑥+ ​sinh ⁠𝑥= ​𝑒↑𝑥   
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Useful numbers	

Current standard model is a totally flat universe with 
the following parameters	



 Distance-redshift relation 

 
•  Angular diameter distance 
•  Luminosity distance  

Proper distance(measure both ends at the same time) is useless 
because what we observe today was existed in the past  

Proper distance between O 
and G at the present 

OG

Proper distance between O 
and G at the time of emission 

We only have operationally defined“distance” 
directly related with observation.  Direct 
observable is redshift and thus we need the 
relation between the operationally distance 
and redshift	

What is distance in cosmology?	



 Angular diameter distance 
L
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In Euclidean geometry  an object with proper length L 
is seen as an angular scale  Δθ　from the distnce D 

D
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This is angular distance.   
The problem of this distance is that there is no source whose proper 
distance is known. 	

A

B

We use this relation as a definition of distance. Namely if an object whose 
proper distance L is known(standard ruler) is seen as an angular scale Δθ, 
then  we define the distance to the object as  
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The proper distance between event A and B	
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Consider two nearby events A and B on the same time and radial coordinates, 
and also same angular coordinate φ ＝const.	

Angular diameter distance as a function of redshift	



Calculation of χ(z)　K=0 case 
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Angular diameter distance 



In Euclidean geometry the observed energy flux f at distance D from a source with 
absolute luminosity L may be written as s 

24 D
Lf
π

=

One can use this relation as a definition of  “distance”	
2/1

4 ⎟⎟⎠

⎞
⎜⎜⎝

⎛
≡

f
LDL π

This is called the luminosity distance	

Consider a light source with a fixed comoving radial 
coordinate  χ　	
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Angular diameter distance and Luminosity distance 

Angular diameter distance	 Luminosity distance	



Inhomogeneous cosmology 



The line element of realistic inhomogeneous universe 
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Although we consider only linear order in the potential Ψ,    it does not mean that the density 
contrast ​𝛿↓𝑚  is also small. It can be very large as far as the spatial scale of the contrast is 
much smaller than the horizon size.   
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Geodesic equation in inhomogeneous universe 

It is convenient to work in a conformally related spacetime 
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More generally one can prove the following 

When two metric 𝑔 and ​ 𝑔    is related conformally as  
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then a null geodesic in the metric 𝑔 is also a null geodesic in ​𝑔  
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Christoffel symbol in the metric ​𝑔  
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We introduce a new parameter ​𝜆  by the following condition 

Then the 4-momentum in this new parameter  
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Now we solve the geodesic equation in inhomogeneous universe 

Non vanishing Christoffel symbols are  
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Time component of geodesic equation 
Application to CMB Temperature fluctuatoon 
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Then integrating this equation from the last scattering surface to the present 
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The energy of a CMB photon measured by an observer  



Neglecting the potential and Doppler effect today, and remembering the energy density 
of photon fluid is proportional to ​𝑇↑4    

We arrive at the  equation for the temperature fluctuation of CMB observed today 

Sacks-Wolfe effect Integrated S-W 



Sacks-Wolfe effect 
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One can regard the effect of the potential at last scattering surface as the 
shift of the time of the last scattering 

At the last scattering the universe is matter dominant , thus 𝑎(𝑡)∝​𝑡↑2/3  
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Higher density regions is observed as cold spots 



Integrated Sachs-Wolfe effect 
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Early ISW 

Effect of radiation around the last scattering surface 

When the universe is exactly matter dominant the potentials are constant in time. Therefore 
there are two region where ISW effect becomes impotant.is 

Late ISW 
Effect of dark energy  around z=0.3 



Space component of geodesic equation 
Application to gravitational lensing 

In the following we take Φ=Ψ.  Then the geodesic equation becomes 

Combined these two equations give us the following 

Some detail  
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Suppose that the light ray propagates toward  positive z-direction so that ​𝑛  =(0, 0, 1 ) 

Direction of propagation changes by the potential, but its change is small so that we 
neglect the effect when it is multiplied by another small quantity such as the potential 


