Homogeneous & Isotropic Cosmology

« RW geometry

» Redshift

* Expansion law

» Distance-redshift relation



RW geometry

* Redshift galaxy survey shows that the spatial distribution of galaxies are
homogeneous over 100 Mpc

« Temperature fluctuation in CMB is isotropic

mm) 3D space is a constant curvature space

Theorem:

Riemann tensor of 3-dimensional constant curvature space may be written
as follows

R, =K(g,&1— &8 1) with 4a constant



Constant Curvature Space

3D Riemann Tensor
Ry =Ry, A=(j),B=(K)

This can be regarded as a symmetric mapping in 3D vector space
Riem: A, — R/,

If space is isotropic, then there will be no special direction .

This means that three eigenvalues of the mapping are the same . Otherwise, the

special eigenvalue and the corresponding eigenvector defines the special direction
ﬂ“i - gyk/ljk

This contradict the isotropy of space.

This mapping should be proportional to the identity mapping.
Ry =< 05

R =2K 8187 = K(8°60 —8°67)



Bianchi identity
Rabcd;e T Racde;b T Radbc;a — O

From this
V,K=0 == K=const

Ricci tensor and Ricci scalar take the following form

R,=g8“R,..=K3g,,—8,.)=2Kg,,
R=g"R, =6K

Constant curvature space is classified into 3 types depending on the
signature of K

K>0: 3-sphere
K =0: Flatspace
K<OQ: 3-d hyperboloid



Explicite form of the line element

Since space is isotropic one can foliate space by 2D sphere

dr’ =e*dr? +r*(d@’ +sin” 8d¢*)

Then the Ricci tensor of this metric is calculated as

1 1
W:—d—/l, R69:1+—re_ﬂd—l
r dr 2 dr
Substitute this expression into
R,, =2Kg,,

gives the following equations

A/r=2Kg =2Ke"

1 ,
1+5re_ﬂ/1 —e "t =2g,, =2Kr’

) ot =1-Kr

Finally we have the following line element for constant curvature space
dr’ .
dl* = 5 +7r°(d@” +sin” 8 d¢*)
1-Kr




RW line element
We take a comoving spatial coordinate (x77), i=1,2,3
This means each galaxy has a constant spatial position

We take the proper time of galaxy as a cosmic time t
dt’ =—-ds’ =—g,di’ == g, =-1

Each galaxy is freely falling
CZZZ 0 d;: ?—:=0+Féo =0 == I}, =g'g,,=0 =) g,=0

Thus 4D line element may be written as

1 _d;;z +12(d6* +sin® 6 dg’ )}

=—dt’ +a’ @) [ dy’ +r> () (d6> +sin*> 0 dp?) ]

ds py” =—dt* +a’ (r)[

where sin”' 7 (K =+1) Closed universe

d.
}((7’)=J‘\/l_r?=< r (K=0) Flat universe

\sinh‘1 r (K=-1)  Open universe




Redshift
The energy of a photon k observed by an observer «
E=—k-ii

The ratio of energy emitted at 4.5 and observed at 1/0 is
_ (U - k)(\s)
(U - k)(\o)

1 4+ 2

Consider the rest frame of the observer and he received a photon emitted from
a galaxy with radial 3 velocity V=ady/dt

U, =(1,0,0,0)

U =91, V/a(A),0,0)=(1, V/a(l),0,0)

From isotropy of space, the observer is located at the origin of the spatial coordinate so
that a photon propagate radially

—

k=(k"k"/a)

0="" +T (k%] =k P +a(k f=0=k p



Eobs — h Vobs — _E(Zobs ) l_jobs — ko

obs

Eem — h Vem — _]_c'(ﬂ“em ). l_jem — keom (1 _ V)

1 — Vobs — k(())bs — aem
1 Tz Vem keom (1 _ V) aobs (1 o V)

No peculiar motion in an exactly homogeneous and isotropic universe

a, 1

l+z= =
a(t,,) alt,,)




Dynamics of Universe

dr’®
1— Kr?

ds py,” =—dt* +a’ (t){ +7°(d6> +sin® 0 dg’ )}

+ Einstein equation

Friedmann equation

a\” LK _ 86
a a? 3 P

@ _ 2G4 3p)
a 3

nl'..f
p+3—(p+£F)=10
(1
We have 3 kinds of energy
P =P+ PPy
with Pdm =0, Plr=1/3 plr, PIA=—plA



Friedmann equation in terms of density parameter

a > K G
(—j +— = (o, +p, +pPr)

a a 3

Using the density parameters

_ Py (a) _ 3H’
QX (CZ) - ,OC,, (CZ) b pcr (CZ) - 87Z'G

We have

aY 8nG K
(—) :T(pm+pr+p1\)__2

a a

| K
a’H?

Thus Universe is flat when the total density parameter is equal to 1

=0, (a)+Q,(a)+Q,(a)-1=Q,,(a)-1



Friedmann equation in terms of the present density parameters

3H;
QX,O = pX,O ° Iocr,O — 87[(0;
pcr,O

. \2
a 3 a a a

- H2:H§ IOmO 13_|_ IOrO 14_|_ IOA . 2K2
pcr,O a pcr,O a pcr,O a HO

Q Q K
2 2 mO r0
=) g _HO( 3 + pr +QAO_H§ ]
Hubble parameter as a function of redshift

1
ﬁ“obs :lem(l‘FZ) = 1+z :It)

H*(2)= H2(Q,,(1+2) +Q,,(1+2)" +Q,,)




Evolution of density parameters with totally flat case(A=0)

QX = pX (Cl)
(@ P (a)

H2 H(? QmO
a) = =
Per (@) 837G 8 (

Q Q
chr,O( ’;10 + ZO +QAO)

Q
0
1+ Q,,
a a

a a

3

. (a Lo
Qm(a)zp ( )= - 0 —
pcr (a) pcr,O (Qm,Oa + Qr,Oa + QA,O
Q A+ z)’
Q A+2)+Q (1+2)"+Q,




Density Parameter Omega

In the following we assume totally flat universe K=0

O (2)

<o,

Q4 (2)

Qo1+ 2)4

Qm.{]( I + 3)3

B EET.,[}(.I. + 3)4 + SZ?H.D(I- T ;]3 T g-}ﬂ.[}

a0

1+ :)4 T EI?H.U(J- + :]3 + gz!\.[}

T Qo1+ 2) T+ Qmo(l+2)3 + Qag

2
These relations are obtained by noticing p . = e Pcr,o(ﬂmo(l +2)°+Q,,(1+2)' +Q,,)
0B |- -
o Dear Energy
os | Radiation . + dominant
dominant Matter dominant \
A t
< 1/2 /A A
0 q o< t / i [ o< tZ/ 3 : ac<e
| 1 Q
0.2 | i 142z = — ——m0
eq Q
| eq r0
o E l 1/3
: Q
' L ' - : 1+ZA:—:[ AO) ~1.29
1e-08 1e-05 0 Dﬁll'DT 0.007 0.0 0.1 Vo1 aA Q 0
H scale factor a — m
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Important epoch in totally flat universe

H*(2)= H(Q,,(1+2) +Q,,(1+2)* +Q,, )
Radiation-matter equality time Z,, : p,(,)=p,(,)

p. ()= p,pa" (t)=p,,(1+2)°
_ 7’k

30%°
P ()= mea_3 ()= Poo(1+ 2)3 = Qm,Opcr,O (I+ 2)3
P. o =1.88x107h* g/em’

o g. T =7.80x107'c* kg /m’ & T, = 2.725K

Q
42z, =£20 = 2200 _ 5 41%104(Q, 1) ~ 3400
prO QF,O

Matter-cosmological constant equality time 7, : p,,(,)=p,(,)

m,0

1/3
Q
Qm,OIOcr,O(1+ZA)3 :lOA 2ZA :[QA’O ] _1 = 029



Expansion Behavior in Transition from MD to A Dominant

N
(ﬁj :Hg(gngo +QAO)
a a

I 4= a \/Zda
= JQ,, +Q,
m.0 A0
Since isinh_1 X = ! = isinh_1 P > 3x
dx \/x2 +1 dx 2V x +1

1/3
Q. , 3 . 3
a(t) = (I—Q’O ] smhm(g \/I—Qm’OHOt): a, smhm(g Jl—Qm’OHotj
0

m,

| O 1/3 _O 1/3
da Qm,o Qm,o

We used




Since cosh x+sinhax=elx
.. 3/2 3
) : .
t(a) = . In (i> +4/1+ (i)
SH{}‘\/I — Hm_(: (A (LA

For a=1(at present)

to

2 1 T 1 — Qm.
In [ \/ .
U

- :_‘):HU\/]. —_ Q \/ Q'm,l]

] ~ 13.8 Gyr



Standard Model

Current standard model 1s a totally flat universe with
the following parameters

K=0 Q,,=069 Q =031, Q 6 ~84x107,

H,~67.8 kms 'Mpc™
Useful numbers

Z, <3400 1, =3.4x10°H,' =51,000)r

1/3
Q
a, =[m°] ~0.77, z, =029, ¢, ~103Gyr

A0
2 1+1-Q .
= In ~13.8 Gyr
3H,\1-Q Q

4




Distance-redshift relation

What 1s distance in cosmology?

Proper distance(measure both ends at the same time) 1s useless
because what we observe today was existed in the past

Proper distance between O

We only have operationally defined“distance” andGatthe present
directly related with observation. Direct <
observable 1s redshift and thus we need the
relation between the operationally distance

and redshift

\ 4

. . Proper distance between O
» Angular diameter distance aniGatthetJeofemission

* Luminosity distance G O



Angular diameter distance

In Euclidean geometry an object with proper length L
is seen as an angular scale A0 from the distnce D

We use this relation as a definition of distance. Namely if an object whose
proper distance L 1s known(standard ruler) is seen as an angular scale A0,
then we define the distance to the object as
L
1T A6

This is angular distance.
The problem of this distance is that there is no source whose proper
distance is known.



Angular diameter distance as a function of redshift

Consider two nearby events A and B on the same time and radial coordinates,
and also same angular coordinate ¢ =const.

. . . . ) t=const. r=const.
Since the distance between arbitrary two events 1s given by

ds* =—dt* + & (O)[dy* +7r* () ( d&” +sin> 6 d¢?) |

The proper distance between event A and B

L=[-ds*(dt =dr =dp=0)]"> =a(t) r A

Thus 2)
r\z
D, (z)=a(t) r(z)=
(D) =a() r@)=>= e
Along the light path
© o dr “odt
= —(: )
e aw ©*

(sin™' 7 (K =+1) [(sin y (2), (K =+1)

2= — == 7 (K =0) ) (2)={ y(2), (K=0)
sinh™ 7 (K =-1) sinh y (2), (K=-1)




Calculation of x(z) K=0 case
cdt =—a(t)dy

dadt tdal - L = _dz
X(2)= fa(t)—tjg tj_zﬁ jo H(z) HJ E(z)

E(z)=[Q,,(1+ 2)3 T QAO]I/z

K=A=0 Einstein de Sitter universe

1 = dz 2 1
1(2)= —J E(z) Hjo (1+z)3/2_H0{1_(1+Z)”2}

DA(Z):a(Z)Z(Z):[j |:1—|1—Z_(1+IZ)3/2:|

In flat model K=0
dz 2

1 ¢ 2 1
y(z)=— — [1— }z
Ho":) \/Qm0(1+z)3+QAO H,\, , Vitz | H,Q, ,
2 1
D, (z)=a(z)y(z)=
(2)=a(z)y(z) HO\/Q—mOHZ

as z>>1

for large z



Angular diameter distance
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Luminosity distance

In Euclidean geometry the observed energy flux f at distance D from a source with
absolute luminosity L may be written as s

L
f_47zl)2

One can use this relation as a definition of “distance”

DLE(L)
4

This is called the luminosity distance

Consider a light source with a fixed comoving radial

coordinate ¥
L )Av At L )Av K At 1
f;/(vobs )AvobsAtobs = V( = )2 ” = V( n )2 2o X 2
4r r (x(2)) r ri(x(z))  (+z)

=) [p (z)=0+2) r(2)

Flux is energy per unit area and unit time
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Inhomogeneous cosmology



The line element of realistic inhomogeneous universe

ds® =—(1+2%)dt* +a* ()1 - 2% \dx® + dy* +dz°)
AY = 471Ga*p,d,

Note

Although we consider only linear order in the potential ¥, it does not mean that the density
contrast sim is also small. It can be very large as far as the spatial scale of the contrast is
much smaller than the horizon size.

¢ \2
AY = 471Ga*p,o, ¥ o c(ﬁj %pb

L E

2
5~(L7Hj‘{’>>l



Geodesic equation in inhomogeneous universe

It is convenient to work in a conformally related spacetime
dt

dn=——- Conformal time
a(t)

ds’ =a’ [— (1+2%¥)dt* +(1- 2(D)(dx2 +dy” +dz’ )]E a’g,,dx"dx" =a’ds”
More generally one can prove the following

When two metric g and g is related conformally as
2 ~
g =2(X)g,,
then a null geodesic in the metric g is also a null geodesic in g

k=g, kY =0, k*V k" = k(0 k" + T4 (g)k”)=0



Christoffel symbol in the metric g

F'L(lx/)’(g)_ gﬂv(aagvﬁ-l_aﬁgav_avgaﬁ ):Fﬂ ( )+Q_1 ﬂv(gvﬁ aaQ-I_gm/a,BQ_gaﬁaVQ )

1
)
KV k= k(0 k4 +T4 () )= k(0 k* + T (@) +2(0, QK ) =29, In Q) “k?

We introduce a new parameter 4 by the following condition

A _ 2
ffz\

Then the 4-momentum in this new parameter
da”

Lh _ EI_EA"“
d

-

~y

RV b =R,k + T @R )= ke 0k + T () )=0



Now we solve the geodesic equation in inhomogeneous universe

-..Jlr i
rI!JEI-‘- L l.l” -ﬁ;:'.-r-l ;\J;":f
rf;.\ K |

Gy k"R =0

0

Non vanishing Christoffel symbols are

Al ) ! ) Al )
["go =V, g, =W, 15

I =
j= — @ (}”-

) ] ! =1 1 =7 -1
r 0N — ITJ;'.. r ”_}: — {T} {}_JI" r ,.IL — _{T}1_jf'};.' — {T}.L-ﬂ_;‘ 1

=0V /on
dko 0 0707 i 07, i7 J

+ T (k°) + 20k k' + Tk 'k’ =0
a1
dk’ + T (k°) + 2T k k7 + Tk 7k * =0
dﬂ, 00 Jjk —

In the following we omit the tilde on k



Time component of geodesic equation

Application to CMB Temperature fluctuatoon

0
ak_ Y'(k°) +2W Kk —®'5. k'K’ =0
A "’ /

Remembering 47u=dxTu /dA and 472 =0, and neglecting second order in the potential

LI (0 + 20" — @) =0 ke =(k°,k°n") with n'n' =1
dan 1
0
dk — (V4D )k +2k° i+ni8i ¥ =0
dA a7
dnk’

=( P+ )—2(i +n'0, ]\P

dA on



Then integrating this equation from the last scattering surface to the present

k ' '
In ko((:o) [ dn(ean) -2 W) —¥o,)
LS LS
K2(m0) = K% (is) (™ 0 gt @) — 2 M) — B <
» EO(nLs) h +/m.~_+ K (I + &) —2[¥(mo) = Vs

The energy of a CMB photon measured by an observer (7 =U"° ( 1, vi)
U2 :—1:}UO :1_"}’

w(n) =—g,U"k" = [1 + W(n) — n"'v"(n}] k' (n)

—

w(T,no) — w(i

w(1, s

, LS )

v TILS

o ) : . '
; A / d”" (111" + (11’)_ |:k_[1(;r;:;].) — W(nLs) + n' (E'F(?}L:ﬂ} — E':UFH})



w(m,no) — w(n,
'L..I

1o i . .
o7 — / dn' (W' + &")— |:1L'{i,i’:}) — U (nLs) +n' (E'I{F,TLH} — E'E(I}[}])}
1,1

v TILS

e "-—'J.

Neglecting the potential and Doppler effect today, and remembering the energy density
of photon fluid is proportional to 7774

dp- _ ol
- 1

0y =
We arrive at the equation for the temperature fluctuation of CMB observed today

_ 1 . Mo o
— = 70py(Nus) + ¥(nLs) +/ dn’ (W' + ®") + n'v' (nLs)
4 LS
\ Y J \ | |
Sacks-Wolfe effect Integrated S-W




Sacks-Wolfe effect

or

1 OT
= —— S0 +W¥ S lll IR\
( p~ )SW 2 0., (717,5) an (77,5)

One can regard the effect of the potential at last scattering surface as the
shift of the time of the last scattering

ot
—(1+2¥W)dt> -d(t+xn) = —=Y¥
4
At the last scattering the universe is matter dominant , thus a(¢)«x¢72/3

oa 2 o 2
= 2 S (yy)

IS a 3 ¢ 3
YA YA

= = ¥ — ¥
( p- )SW am +W¥(1,5) 3 (17,5)

Higher density regions is observed as cold spots

1




Integrated Sachs-Wolfe effect

or

Mo
O ) _ (" an(w+a')
( I )ISW TLs

When the universe is exactly matter dominant the potentials are constant in time. Therefore
there are two region where ISW effect becomes impotant.is

Early ISW

Effect of radiation around the last scattering surface

Late ISW
Effect of dark energy around z=0.3



Space component of geodesic equation
Application to gravitational lensing

In the following we take ®=%¥. Then the geodesic equation becomes

& oW 0 (d”)j —0
dx> T \dN)

!:.-‘r_j , Yy e [ -
T4 (—‘.3111"13.’ +2(8" — n.’n")t)_j-lli) (r;{) =0
(s

A2

Combined these two equations give us the following

Fat AV P
: 9 _zf_”_ ‘1—2(1‘5 J — Tl HJ) t:)jﬂf:ﬂ
dn-= dn -

Some detail

d’x' _ d (dndx' \_d’ndx’ (dn S dix' dPn k' _(dn S d2x
d?  dildidn | dr dn \dA ) dn® dAX k° \dA ) dn’




Suppose that the light ray propagates toward positive z-direction so that » =(0, 0, 1)

Direction of propagation changes by the potential, but its change is small so that we
neglect the effect when it is multiplied by another small quantity such as the potential

2
d= "

— + 20, =0, a=1,2
dn-

5 3 |
d-r W
N

dn? ; _E




